LESSON PLAN

Name of Assistant Professor: Dr. Vandana Gupta
Subject: Mathematics
Even Semester (2022-2023)

Class	B.A/B.Sc II Semester	$\begin{array}{\|l\|} \hline \text { B.A/B.Sc IV } \\ \text { Semester(Practical) } \\ \text { Group-A, B } \\ \hline \end{array}$	B.A/B.Sc VI Semester	$\begin{array}{\|l\|} \hline \text { B.A/B.Sc IV } \\ \text { Semester(Theory) } \end{array}$
Subject	Ordinary Differential Equation, Number theory and trigonometry	Programming in C \& Numerical Methods	Linear Algebra, Dynamics	Special functions and integral transforms/Programming in C \& numerical methods
FEBRUARY	Differential Equations, Exact Differential Equations, Integrating factor, Integrating factor by inspection method	Program to generate first n prime numbers (Group-A)	Describe Vector space \& its properties, Example of vector space	Series solution of differential equations Power series method
	Rule-1,2,3 to find Integrating factor and examples based on it	Program to solve quadratic equation (Group-A)	Subspace, Linear Sum of Subspace \& Subspace Generated by Set	Definitions of Beta and Gamma functions.
	Rule-4,5 to find Integrating factor and examples based on it	Revision(Group-A)	Vector space \& its properties, Example	Bessel equation and its solution: Bessel functions and their properties, Convergence, recurrence
	Revision of the topic	Program to generate first n prime numbers(Group-B)	Subspace, Linear Sum of Subspace \& Subspace Generated by Set	Relations and generating functions

Test	Program to solve quadratic equation(Group-B)	Direct Sum of Disadjoint Subspace	Orthogonality of Bessel functions
Equations solvable for p, working rule and examples based on it	Revision(Group-B)	Linear Combination of Vectors L.D \&L.I, Related Theorems	Legendre and Hermite differentials equations and their solutions
Equations solvable for y , working rule and examples based on it	Program to calculate compound interest(Group-A)	Linear Combination of Vectors L.D \&L.I, Related Theorems	Legendre and their properties
Equations solvable for x working rule and examples based on it	Program to compute the value of π (Group-A)	 Linear span, Fintely Generated Vector	Revision
Lagrange's Equation, working rule and examples based on it	Revision(Group-A)	Basis of a Vector Space , Ordered Basis	Hermite functions
Revision of the topic	Program to calculate compound interest(Group-B)	Spanning Set \& Linear span, Finitely Generated Vector	Propertiesof Hermite functions
Test	Program to compute the value of π (Group-B)	Basis of a Vector Space , Ordered Basis Existence theorem	Revision
Clairaut's equation, Equations reducible to Clairaut'sform	Revision(Group-B)	Invariance of the number of elements of basis, Maximal linearly Independent set	Revision
Singular solution, Discriminant, p -	Program to swap two numbers(Group-A)	Invariance of the number of	Test

	discriminant, cdiscriminant		elements of basis	
	Related examples and revision of the topic	Program to count number of vowels and consonants (Group-A)	Maximal linearly Independent set, Minimal Related thms	Recurrence Relations
	Test	Revision(Group-A)	Dimension of a vector space, Extension theorems	Generating functions
	Trajectory and types of trajectory with examples	Program to swap two numbers(Group-B)	Indentical Spaces \& Examples	Revision
	Orthogonal trajectory in cartesian coordinates and examples based on it	Program to count number of vowels and consonants (Group-B)	Dimension of a vector space, Extension theorems	Revision
	Orthogonal trajectory in polar coordinates and examples based on it	Revision(Group-B)	Dimension of linear \& Direct Sum	Test
MARCH	Revision of the topic	Program for pattern matching for two strings(Group-A)	Complementary Subspace and examples, Quotient Space, Quotient Space	Orhogonality of Legendre polynomials.
	Test	Program for pattern matching for two strings(Group-B)	Describe linear transformation or V.S Homomorphism	-do-
	Linear Differential Equations with constant coefficients, the	Revision(Group-B)	Properties \& Example of L.T.	-do-

	Differential operator D, Complete solution of L.D. Equations			
	Auxiliary equation (A.E.), To find the complete solution of Differential Equations	Program to reverse a string(Group-A)	 Onto L.T., Construction of L.T.	Orhogonality of Hermite polynomials.
	Rules to solve an equation and its examples	Program to illustrate encryption and decryption of string(Group-A)	Null Space, Range or Image of L.T., Fundamental Theorem of vector space homomorphism	-do-
	Test	Program to reverse a string(Group-B)	Examples of kernel \& Range Space, Composition of two L.T.	-do-

				Legendre polynomial.
	Test	Revision(Group-A)	Dual Space, Double dual of Vector Space	-do-
	Differential Equations involving trigonometric functions and examples based on it	Program to find G.C.D. of two numbers(Group-B)	Eigen values \& Eigen Vector of L.T.	Laplace Transforms Existence theorem for Laplace transforms, Linearity of the Laplace transforms, Shifting theorems, Laplace transforms of derivatives and integrals
	case of failure and examples based on it	Cont...(Group-B)	Matrix of Identity \& Zero Transformation	-do-
	Differential Equations involving algebraic functions and examples based on it	Program to generate first n Fibonacci terms(Group-A)	Similar Matrix, Diagonalisation, Minimal Polynomial,	-do-
	Differential Equations involving product of functions and examples based on it	Cont...(Group-A)	Inner Product space \& Examples , Norm of Vector \& Theorems	Differentiation and integration of Laplace transforms, Convolution theorem
	Homogeneous linear equation and method of solving	Program to generate first n Fibonacci terms(Group-B)	 Eigen Vector of L.T., Similar Matrix, Diagonalisation, Minimal Polynomial	-do-
APRIL	Equations reducible to Homogeneous linear form and examples based on it	Cont...(Group-B)	Cauchy Schwarz Inequality, Triangle Inequality	-do-
	Solve linear Differential	Revision(Group-B)	Normed linear Space,	Inverse Laplace transforms, convolution

	Equation of 2 nd order by changing the dependent variable when an integral included in C. F.is known and examples based on it		Orthogonal Complement, Orthonormal Set	theorem, Inverse Laplace transforms of derivatives and integrals
	Method of finding P. I. and examples based on it	Program to find transpose of matrix(Group-A)	Inner Product space \& Examples Norm of Vector \& Theorems	-do-
	To solve linear Differential Equation of 2	Program for multiplications of order by removing the first derivative matrix(Group-A)	Gram Schmidt orthogonalization Process	Solution of ordinary differential equations the dependent variable and working rule

	To solve linear Differential Equation of 2 ord order by the method of undetermined coefficients, table related to the topic	Program for multiplications of matrix(Group-B)	Cont...	Fourier transforms: Linearity property, Shifting, Modulation, Convolution Theorem
	Revision	Revision(Group-B)	Cont...	-do-
	$1^{\text {st Method of }}$ solving Simultaneous linear	Program to generate first n Fibonacci Differential Equations with constant coefficients and examples based on it	Projectile motion of a particle in a plane	-do-
	$2^{\text {nd Method: }}$ Method of Differentiation and examples based on it	Cont...(Group-A)	Cont...	
Simultaneous Equations of the form P1dx+ Q1dy+R1dz=0 and P2dx+Q2 dy+ R2dz=0 where P1, P2,....are functions of z and examples based on it	Program to demonstrate Bisection method(Group-A)	Vector angular velocity	Parseval's identity for	
Method for solving dx/P= dy/Q= dz/R and examples based on it and general interpretation	Cont...(Group-A)	Cont...	Test	
Second integral found with the help of first and	Revision(Group-A)	Cont...	-do-	

	examples based on it			
	Discussion of the above topic	Program to generate first n Fibonacci terms(Group-B)	Doubt Session.	-do-
	Test demonstrate Bisection method(Group-B)	Doubt Session.	-do-	
	Total Differential Equations, Necessary and sufficient condition for the integrability condition of exactness	Revision(Group-B)	Test	Solution of differential Equations using Fourier Transforms
Method1- Inspection method and related examples	Program to demonstrate Regula- Falsi method(Group-A)	General motion of a rigid body	-do-	
	Method 2: Regarding one variable as constant out of three variables in Pdx+Qdy+Rdz=0 and related examples	Cont...(Group-A)	Cont...	-do-
Method3 of solving Homogeneous Equations and examples based on it	Revision(Group-A)	Cont...	Programmer's model of a computer, Algorithms, Flow charts	
Method 4: Method of Auxiliary equation and	Program to exampes based	Regula- Falsi method(Group-B)	Cont...	

	on it			
	Examples related to the above topic	Cont...(Group-B)	Cont...	-do-
	Test	Revision(Group-B)	Cont...	-do-
	To solve the total Differential Equation when it is exact and homogenous of degree n not equal to -1 and examples based on it	Program to demonstrate Newton-Raphson method(Group-A)	Central Orbits	Data types, Operators and expressions
	Continue	Cont...(Group-A)	Cont...	-do-
	Revision of the topic	Revision(Group-A)	Cont...	-do-
	Test	Program to demonstrate Newton-Raphson method(Group-B)	Cont...	
	Discussion on the problems of the students	Revision(Group-B)	Cont...	-do-
MAY	De moivre's theorem	Program to demonstrate Gauss Elimination method(Group-A)	Kepler laws of motion	Decisions control structure
	Roots of a Complex number	Cont...(Group-A)	Cont...	-do-
	Solutions of equations, Expansion, Exponential functions of a complex variables	Revision(Group-A)	Cont...	Decision statements
	Revision of the topic	Program to demonstrate Gauss Elimination	Cont...	-do

		method(Group-B)		
	Test	Cont...(Group-B)	Cont...	-do-
	Properties of exponential function, Circular functions of complex variables	Program to demonstrate Gauss Seidel method(Group-A)	Motion of a particle in three dimensions	Test
	Euler's theorem, Trigonometrical formulae for complex quantities, Numerical problem's of Trigonometric	Cont...(Group-A)	Cont...	Logical statements
	Hyperbolic functions, Logarithm of a complex quantity	Revision(Group-A)	Cont...	
	General exponential function, General logarithmic function	Program to demonstrate Gauss Seidel method(Group-B)	Cont...	Cons

	demonstrate Gauss Jordan method(Group-B)		
Test	Cont...(Group-B)	Cont...	Case control structures
Numerical of inverse circular function	Program to demonstrate Crout's method(Group-A)	Doubt Session	-do-
Inverse circular functions of a complex number	Cont...(Group-A)	Doubt Session	-do-
Inverse hyperbolic functions, Relation between inverse circular function and inverse hyperbolic functions	Program to demonstrate Crout's method(Group-B)	Doubt Session	-do-
Revision	Cont...(Group-B)	Revision	Functions
Test	Revision(Group-B)	Revision	-do-
Gregory's series and its numerical	Revision of practicals and problem discussed(Group-A)	Revision	-do
Series of sines and cosines of angle which are in A.P, Method of differences	Cont...(Group-A)	Revision	-do-
C+iS method of summation	Revision(Group-A)	Revision	Preprocessors and Arrays
Series depending on logarithmic series, Summation of	Revision of practicals and problem discussed(Group-B)	Revision	-do-

	series			
	Revision of the topic discussed	Cont...(Group-B)	Test	-do-
	Test	Revision(Group-B)	Test	Revision

