LESSON PLAN

Name of Assistant Professor: Dr. Vandana Gupta Subject: Mathematics Even Semester (2022-2023)

Class	B.A/B.Sc II Semester	B.A/B.Sc IV Semester(Practical) Group-A, B	B.A/B.Sc VI Semester	B.A/B.Sc IV Semester(Theory)
Subject	Ordinary Differential Equation, Number theory and trigonometry	Programming in C & Numerical Methods	Linear Algebra, Dynamics	Special functions and integral transforms/Programming in C & numerical methods
FEBRUARY	Differential Equations, Exact Differential Equations, Integrating factor, Integrating factor by inspection method	Program to generate first n prime numbers (Group-A)	Describe Vector space & its properties, Example of vector space	Series solution of differential equations – Power series method
	Rule-1,2,3 to find Integrating factor and examples based on it	Program to solve quadratic equation (Group-A)	Subspace, Linear Sum of Subspace & Subspace Generated by Set	Definitions of Beta and Gamma functions.
	Rule-4,5 to find Integrating factor and examples based on it	Revision(Group-A)	Vector space & its properties, Example	Bessel equation and its solution: Bessel functions and their properties, Convergence, recurrence
	Revision of the topic	Program to generate first n prime numbers(Group-B)	Subspace, Linear Sum of Subspace & Subspace Generated by Set	Relations and generating functions

	Program to solve	Direct Sum of	Orthogonality of Bessel
Test	quadratic	Subpace &	functions
	equation(Group-B)	Disadjoint	
		Subspace	
Equations	Revision(Group-B)	Linear	Legendre and Hermite
solvable for p,		Combination of	differentials equations and
working rule		Vectors L.D &L.I,	their solutions
and examples		Related	
based on it		Theorems	
Equations	Program to calculate	Linear	Legendre
solvable for y,	compound	Combination of	and their properties
working rule	interest(Group-A)	Vectors L.D &L.I,	
hased on it		Related	
bused on h		Theorems	
	Program to compute	Spanning Set &	Revision
Equations	the value of	Linear span ,	
solvable for x	π(Group-A)	Fintely	
working rule		Generated Vector	
and examples			
based on it			
Lagrange's	Revision(Group-A)	Basis of a Vector	Hermite functions
Equation,		Space , Ordered	
•			
working rule		Basis	
working rule and examples		Basis	
working rule and examples based on it	Program to calculate	Basis	Properties of Hermite
 working rule and examples based on it Revision of the topic	Program to calculate	Basis Spanning Set &	Propertiesof Hermite
working rule and examples based on it Revision of the topic	Program to calculate compound	Basis Spanning Set & Linear span , Einitely	Propertiesof Hermite functions
working rule and examples based on it Revision of the topic	Program to calculate compound interest(Group-B)	Basis Spanning Set & Linear span , Finitely Generated Vector	Propertiesof Hermite functions
working rule and examples based on it Revision of the topic	Program to calculate compound interest(Group-B) Program to compute	Basis Spanning Set & Linear span , Finitely Generated Vector Basis of a Vector	Propertiesof Hermite functions Revision
working rule and examples based on it Revision of the topic Test	Program to calculate compound interest(Group-B) Program to compute the value of	Basis Spanning Set & Linear span , Finitely Generated Vector Basis of a Vector Space , Ordered	Propertiesof Hermite functions Revision
working rule and examples based on it Revision of the topic Test	Program to calculate compound interest(Group-B) Program to compute the value of π(Group-B)	Basis Spanning Set & Linear span , Finitely Generated Vector Basis of a Vector Space , Ordered Basis Existence	Propertiesof Hermite functions Revision
working rule and examples based on it Revision of the topic Test	Program to calculate compound interest(Group-B) Program to compute the value of π(Group-B)	Basis Spanning Set & Linear span , Finitely Generated Vector Basis of a Vector Space , Ordered Basis Existence theorem	Propertiesof Hermite functions Revision
working rule and examples based on it Revision of the topic Test	Program to calculate compound interest(Group-B) Program to compute the value of π (Group-B) Revision(Group-B)	Basis Spanning Set & Linear span , Finitely Generated Vector Basis of a Vector Space , Ordered Basis Existence theorem	Propertiesof Hermite functions Revision
working rule and examples based on it Revision of the topic Test Clairaut's equation,	Program to calculate compound interest(Group-B) Program to compute the value of π(Group-B) Revision(Group-B)	Basis Spanning Set & Linear span , Finitely Generated Vector Basis of a Vector Space , Ordered Basis Existence theorem Invariance of the number of	Propertiesof Hermite functions Revision Revision
working rule and examples based on it Revision of the topic Test Clairaut's equation, Equations	Program to calculate compound interest(Group-B) Program to compute the value of π(Group-B) Revision(Group-B)	Basis Spanning Set & Linear span , Finitely Generated Vector Basis of a Vector Space , Ordered Basis Existence theorem Invariance of the number of elements of basis.	Propertiesof Hermite functions Revision Revision
working rule and examples based on it Revision of the topic Test Clairaut's equation, Equations reducible to	Program to calculate compound interest(Group-B) Program to compute the value of π(Group-B) Revision(Group-B)	Basis Spanning Set & Linear span , Finitely Generated Vector Basis of a Vector Space , Ordered Basis Existence theorem Invariance of the number of elements of basis, Maximal linearly	Propertiesof Hermite functions Revision Revision
working rule and examples based on it Revision of the topic Test Clairaut's equation, Equations reducible to Clairaut'sform	Program to calculate compound interest(Group-B) Program to compute the value of π(Group-B) Revision(Group-B)	Basis Spanning Set & Linear span , Finitely Generated Vector Basis of a Vector Space , Ordered Basis Existence theorem Invariance of the number of elements of basis, Maximal linearly Independent set	Propertiesof Hermite functions Revision Revision
working rule and examples based on it Revision of the topic Test Clairaut's equation, Equations reducible to Clairaut'sform	Program to calculate compound interest(Group-B) Program to compute the value of π(Group-B) Revision(Group-B)	Basis Spanning Set & Linear span , Finitely Generated Vector Basis of a Vector Space , Ordered Basis Existence theorem Invariance of the number of elements of basis, Maximal linearly Independent set	Propertiesof Hermite functions Revision Revision
working rule and examples based on it Revision of the topic Test Clairaut's equation, Equations reducible to Clairaut'sform Singular	Program to calculate compound interest(Group-B) Program to compute the value of π(Group-B) Revision(Group-B) Program to swap	Basis Spanning Set & Linear span , Finitely Generated Vector Basis of a Vector Space , Ordered Basis Existence theorem Invariance of the number of elements of basis, Maximal linearly Independent set	Propertiesof Hermite functions Revision Revision
working rule and examples based on it Revision of the topic Test Clairaut's equation, Equations reducible to Clairaut'sform Singular solution,	Program to calculate compound interest(Group-B) Program to compute the value of π(Group-B) Revision(Group-B) Program to swap two	Basis Spanning Set & Linear span , Finitely Generated Vector Basis of a Vector Space , Ordered Basis Existence theorem Invariance of the number of elements of basis, Maximal linearly Independent set Invariance of the number of	Propertiesof Hermite functions Revision Revision

	discriminant, c-		elements of basis	
	discriminant	Due succes to account		De summer de Deletiens
	Related	Program to count	Iviaximal linearly	Recurrence Relations
	revision of the	number of vowers	Minimal	
	topic		Concrating cot 9	
		(Group-A)	Generating set &	
			Related trims	
	Test	Revision(Group-A)	Dimension of a	Generating functions
			vector space,	
			Extension	
			theorems	
	Trajectory and	Program to swap	Indentical Spaces	Revision
	types of	two	& Examples	
	trajectory with	numbers(Group-B)		
	Orthogonal	Program to count	Dimension of a	Revision
	traiectory in	number of yowels	vector space	Revision
	cartesian co-	and consonants	Extension	
	ordinates and	(Group-B)	theorems	
	examples based	(droup-D)	theorems	
	on it		<u>.</u>	— .
		Revision(Group-B)	Dimension of	lest
	trajectory in		linear & Direct	
	polar co-		Sum	
	ordinates and			
	examples based			
	on it			
MARCH	Revision of the	Program for pattern	Complementary	Orhogonality of Legendre
	topic	matching for two	Subspace and	polynomials.
		strings(Group-A)	examples,	
			Quotient Space,	
			Quotient Space	
	Test	Program for pattern	Describe linear	-do-
		matching for two	transformation or	
		strings(Group-B)	V.S	
			Homomorphism	
	Linear	Revision(Group-B)	Properties &	-do-
	Differential		Example of L.T.	
	Equations with			
	constant co-			
	efficients, the			

	Differential			
	operator D,			
	Complete			
	solution of L.D.			
	Equations			
	Auxiliary	Program to reverse	One-One L.T. &	Orhogonality of Hermite
	equation (A.E.),	a string(Group-A)	Onto L.T.,	polynomials.
	To find the		Construction of	
	complete		L.T.	
	solution of			
	Differential			
	Equations			
	Rules to solve	Program to illustrate	Null Space, Range	-do-
	an equation	encryption and	or Image of L.T.,	
	and its	decryption of	Fundamental	
	examples	string(Group-A)	Theorem of	
			vector space	
			homomorphism	
	Test	Program to reverse	Examples of	-do-
		a string(Group-B)	kernel & Range	
			Space,	
			Composition of	
			two L.T.	
	Complementary	Program to illustrate	Singular & Non	Rodrigues' Formula for
	function and	encryption and	Singular	Legendre & Hermite
	particular	decryption of	Transformation,	Polynomials
	integral Rule to	string(Group-B)	Invertible L.T.	
	solve equations			
	involving 1/f(d)			
	and examples			
	using the rule			
	Rule to solve	Revision(Group-B)	Matrix of L.T. ,	-do-
	Differential		coordinate	
	Equations		Vector	
	avponential			
	Examples	Program to find	Matrix of Identity	-do-
	related to the	G.C.D. of two	& Zero	
	above rule	numbers(Group-A)	Transformation	
	Revision	Cont(Group-A)	Change of Basis &	Laplace Integral
		(Related theorems	Representation of

				Legendre polynomial.
	Test	Revision(Group-A)	Dual Space,	-do-
			Double dual of	
			Vector Space	
	Differential	Program to find	Eigen values &	Laplace Transforms –
	Equations	G.C.D. of two	Eigen Vector of	Existence theorem for
	involving	numbers(Group-B)	L.T.	Laplace transforms,
	trigonometric			Linearity of the Laplace
	functions and			transforms, Shifting
	examples based			transforms of derivatives
	on it			and integrals
	case of failure	Cont(Group-B)	Matrix of Identity	-do-
	and examples		& Zero	
	based on it		Transformation	
	Differential	Program to generate	Similar Matrix ,	-do-
	Equations	first n Fibonacci	Diagonalisation,	
	involving	terms(Group-A)	Minimal	
	algebraic		Polynomial,	
	functions and			
	examples based			
	on it			
	Differential	Cont(Group-A)	Inner Product	Differentiation and
	Equations		space & Examples	integration of Laplace
	involving		, Norm of Vector	transforms, Convolution
	product of		& Theorems	theorem
	examples based			
	on it			
	Homogeneous	Program to generate	Eigen values &	-do-
	linear equation	first n Fibonacci	Eigen Vector of	
	and method of	terms(Group-B)	L.T., Similar	
	solving		Matrix ,	
			Diagonalisation,	
			Minimal	
			Polynomial	
APRIL	Equations	Cont(Group-B)	Cauchy Schwarz	-do-
	reducible to		Inequality,	
	Homogeneous		Triangle	
	linear form and		Inequality	
	examples based			
	Solve linear	Revision(Group-R)	Normed linear	Inverse Laplace
	Differential		Space	transforms, convolution
	Sincicida	1	space,	

Equation of 2 nd		Orthogonal	theorem, Inverse Laplace
order by		Vector &	transforms of derivatives
, changing the		Complement.	and integrals
dependent		Orthonormal Set	
variable when			
an integral			
included in C			
E is known and			
F.IS KIIOWII aliu			
examples based			
on it			
Method of	Program to find	Inner Product	-do-
finding P. I. and	transpose of matrix(Croup A)	Space & Examples	
examples based	matrix(Group-A)	& Theorems	
on it		d meorenis	
 To solve linear	Program for	Gram Schmidt	Solution of ordinary
Differential	multiplications of	orthogonalization	differential equations
Equation of 2 nd	matrix(Group-A)	Process	using Laplace transform
order by		1100033	
romoving the			
first dorivativo			
and changing			
the dependent			
variable and			
 working rule			
To solve linear	Revision(Group-A)	Bessel's Inquality,	-do-
Differential		Adjoint Operator	
Equation of 2 ^m		& Self Adjoint	
changing the		Operator	
independent			
variable and			
working rule			
To solve linear	Program to find	Motion on	-do-
Differential	transpose of	smooth and	
Equation of 2 nd	matrix(Group-B)	rough plane	
order by the		curves	
method of			
variation of			
working rule			
and examples			
based on it			

To solve linear Differential Equation of 2 nd	Program for multiplications of matrix(Group-B)	Cont	Fourier transforms: Linearity property, Shifting, Modulation, Convolution
order by the	maank(droup D)		Theorem
method of			meorem
undetermined			
coefficients,			
table related to			
Revision	Pavision(Crown P)	Cont	da
1 st Mothod of	Program to generate	Droigotilo	-uo-
solving	first a Fiboroosi	Frojectile	-00-
Simultaneous			
linear	terms(Group-A)	particle in a	
Differential		plane	
Equations with			
constant			
coefficients and			
examples based			
 on it			
2 nd Method:	Cont(Group-A)	Cont	Test
Nethod of			
ond examples			
hased on it			
Simultaneous	Program to	Vector angular	Parseval's identity for
Equations of	demonstrate	velocity	Fourier transforms
the form P1dx+	Bisection	Vereeley	
01dy+B1dz=0	method(Group-A)		
and $P2dy+O2$			
uy+ KZUZ=U			
where P1,			
P2,are			
functions of z			
and examples			
based on it			
Method for	Cont(Group-A)	Cont	-do-
solving dx/P=			
uy/Q = uz/R and			
on it and			
general			
interpretation			
Second integral	Revision(Group-A)	Cont	-do-
found with the	(r-)		
help of first and			

examples based on it			
Discussion of the above topic	Program to generate first n Fibonacci terms(Group-B)	Doubt Session.	-do-
Test	Program to demonstrate Bisection method(Group-B)	Doubt Session.	-do-
Total Differential Equations, Necessary and sufficient condition for the integrability condition of exactness	Revision(Group-B)	Test	Solution of differential Equations using Fourier Transforms
Method1- Inspection method and related examples	Program to demonstrate Regula- Falsi method(Group-A)	General motion of a rigid body	-do-
Method 2: Regarding one variable as constant out of three variables in Pdx+Qdy+Rdz=0 and related examples	Cont(Group-A)	Cont	-do-
Method3 of solving Homogeneous Equations and examples based on it	Revision(Group-A)	Cont	Programmer's model of a computer, Algorithms, Flow charts
Method 4: Method of Auxiliary equation and examples based	Program to demonstrate Regula- Falsi method(Group-B)	Cont	-do-

	on it			
	Examples related to the above topic	Cont(Group-B)	Cont	-do-
	Test	Revision(Group-B)	Cont	-do-
	To solve the total Differential Equation when it is exact and homogenous of degree n not equal to -1 and examples based on it	Program to demonstrate Newton-Raphson method(Group-A)	Central Orbits	Data types, Operators and expressions
	Continue	Cont(Group-A)	Cont	-do-
	Revision of the topic	Revision(Group-A)	Cont	-do-
	Test	Program to demonstrate Newton-Raphson method(Group-B)	Cont	
	Discussion on the problems of the students	Revision(Group-B)	Cont	-do-
МАҮ	De moivre's theorem	Program to demonstrate Gauss Elimination method(Group-A)	Kepler laws of motion	Decisions control structure
	Roots of a Complex number	Cont(Group-A)	Cont	-do-
	Solutions of equations, Expansion, Exponential functions of a complex variables	Revision(Group-A)	Cont	Decision statements
	Revision of the topic	Program to demonstrate Gauss Elimination	Cont	-do

	method(Group-B)		
Test	Cont(Group-B)	Cont	-do-
Properties of exponential function, Circular functions of complex variables	Program to demonstrate Gauss Seidel method(Group-A)	Motion of a particle in three dimensions	Test
theorem, Trigonometrical formulae for complex quantities, Numerical problem's of Trigonometric	Cont(Group-A)	Cont	Logical statements
Hyperbolic functions, Logarithm of a complex quantity	Revision(Group-A)	Cont	-do-
General exponential function, General logarithmic function	Program to demonstrate Gauss Seidel method(Group-B)	Cont	conditional statements
Revision	Cont(Group-B)	Revision	-do-
Test	Revision(Group-B)	Test	-do-
Inverse circular functions of a real variable	Program to demonstrate Gauss Jordan method(Group-A)	Acceleration in terms of different co- ordinate systems	Implementation of Loops, Switch Statement &
General values and principal value	Cont(Group-A)	Cont	-do-
Identities of inverse circular function	Revision(Group-A)	Cont	-do-
Revision	Program to	Cont	-do-

	demonstrate Gauss		
	Jordan		
	method(Group-B)		
Test	Cont(Group-B)	Cont	Case control structures
Numerical of	Program to	Doubt Session	-do-
inverse circular	demonstrate Crout's		
function	method(Group-A)		
Inverse circular	Cont(Group-A)	Doubt Session	-do-
functions of a			
complex			
number			
Inverse	Drogram to	Doubt Socion	do
hyperbolic	demonstrate Crout's	Doubt Session	-00-
functions	method(Crown P)		
Relation	method(Group-в)		
hetween			
between			
function and			
inverse			
hyperse			
hyperbolic			
 Descision	Cant (Curry D)	Devision	
Revision	Cont(Group-B)	Revision	Functions
lest	Revision(Group-B)	Revision	-00-
Gregory's series	Revision of	Revision	-00
and its	problem		
numerical	discussed(Group-A)		
Series of sines	Cont(Group-A)	Revision	-do-
and cosines of			
angle which are			
in A.P, Method			
of differences			
C+iS method of	Revision(Group-A)	Revision	Preprocessors and Arrays
summation			
Series	Revision of	Revision	-do-
depending on	practicals and		
logarithmic	problem		
series,	discussed(Group-B)		
Summation of			

series Revision of the	Cont(Group-B)	Test	-do-
Test	Revision(Group-B)	Test	Revision