Lesson Plan [Academic Session 2022-2023]

Class: B. ScFirst Year [Isemester]

Subject: (CH-101) Inorganic Chemistry

Dr. Amit Kumar, Assistant Professor of Chemistry

Month	Торіс	Academic Activities
September,	Atomic Structure: Idea of de Broglie matter waves,	Introduction of Syllabus
2022	Heinsenberg's uncertainty principle, Atomic orbitals,	and Course outcomes
	Quantum numbers, Radial and angular wave functions,	Deutersteine erstenne
	normal and orthogonal wave functions, significance of Ψ and Ψ^2 probability distribution curves, shapes of a p, d f orbitals	Doubt solving sessions
	Aufbau and Pauli exclusion principles Hund's multiplicity	Discussion of Previous
	rules. Electronic configuration of elements, effective nuclear	Years Ouestions
	charge, Slater's rules.	
October,2022	Periodic table and Atomicproperties: Classification of	Assignment on various
	periodic table into s, p, d, f blocks, atomic and ionic radii,	topics of Atomic
	ionisation energy, electron affinity and electronegativity	Structure
	definition, methods of determination or evaluation, trend in	.
	periodic table (in s and p-block elements), Pauling, Mulliken,	Discussion on
	Anrea Racnow and Mulliken Jalle's electronegativity scale, Sanderson's electron density ratio Covalent Bond : Valence	Assignment
	bond theory (Heitler-London and Pauling approach) and its	Doubt solving sessions
	limitation, directional characteristics of covalent bond,	Doubt borting sessions
	various type of hybridisation and shapes of simple inorganic	Discussion of Previous
	molecules and ions (BeF ₂ , BF ₃ , CH ₄ , PF ₅ , SF ₆ , IF ₇ , SO ₄ ⁻² ,	Years Questions
	$ClO_4^{-1}, NO_3^{-1})$	
November,2022	Covalent Bond: Valence shell electron pair repulsion	Class Test of Periodic
	(VSEPR) theory to NH ₃ , H ₃ O , SF ₄ , ClF ₃ , H ₂ O, SnCl ₂ , ClO ₃ and ICl $^{-1}$ Molecular orbital theory of homonuclear (N ₂ , O ₄)	Table and Atomic
	heteronuclear (CO and NO) diatomic molecules and ions	properties
	bond energy, bond angle, bond length and dipole moments.	Discussion on Test
	percentage ionic character from dipole moment and	Presentation of Students
	electronegativity difference.	Doubt solving sessions Discussion of Previous
	Ionic Solids: Ionic structures (NaCl, CsCl, ZnS (Zinc	Years Questions
	blende), CaF_2) size effects, radius ratio rule and its	
	limitations, Madelung constant, Stoichiometric and Non	
December 2022	stoicniometric defects in crystals	Doubt colving cossions
December,2022	excluded) and BornHaber cycle Solvation energy and its	Doubt solving sessions
	relation with solubility of Ionic solids. Polarizing power and	Discussion of Previous
	Polarisability of ions, Fajan's rule. Revision of syllabus	Years Questions

Lesson Plan [Academic Session 2022-2023]

Class: B. ScSecond Year [IIIsemester]

Subject: (CH-201) Inorganic Chemistry

Dr. Amit Kumar, Assistant Professor of Chemistry

Month	Торіс	Academic Activities
September,	Chemistry of d-Block elements	Introduction of
2022	Definition of transition elements, position in the periodic	Syllabus and Course
	table, General characteristic properties of d-Block elements,	outcomes
	Comparison of properties of 3d elements with 4d and 5d	Doubt solving
	elements with reference only to ionic radii, oxidation state,	sessions
	magnetic and spectral properties and stereo chemistry.	Discussion of
		Previous Years
		Questions
October,2022	Chemistry of d-Block elements	Sessional Test of
	Stability of various oxidation states and e.m.f (Latimer and	Chemistry of d-block
	Frost diagrams), Structure and properties of some	elements
	compounds of transition elements- TiO ₂ , VOCl ₂ , FeCl ₃ ,	Discussion on Test
	$CuCl_2$ and $Ni(CO)_4$,	Doubt solving
	Coordination Compounds:Werner's theory of coordination	sessions
	compounds, effective atomic number, chelates,	Discussion of
	nomenclature of coordination compounds, Isomerism in	Previous Years
	coordination compounds,	Questions
November,	Coordination Compounds: Valence bond theory of	Class Test of
2022	transition metal complexes.	Coordination compds
	Non-aqueous solvents: Physical properties of solvents, types	Discussion on Test
	of solvents and their general characteristics	Doubt solving
		sessions
		Discussion of
		Previous Years
		Questions

December,	Non-aqueous solvents: Reactions in non-aqueous solvents	Doubt solving
2022	with reference to liquid NH ₃ and liquid SO ₂ .	sessions
	Revision of syllabus	Discussion of
		Previous Years
		Questions

Lesson Plan [Academic session 2022-2023]

Class: B. ScThird Year [Vsemester] Subject: (CH-301) Inorganic Chemistry Dr. Amit Kumar, Assistant Professor of Chemistry

Month	Торіс	Academic Activities	
September,	Metal-Ligand Bonding in Transition Metal	Introduction of Syllabus and Course	
2022	complexes:Limitations of valence bond theory,	outcomes	
	an elementary idea of crystal field theory, crystal	Test to identify Slow and Advanced	
	field splitting in octahedral, tetrahedral and	Learners	
	square planer complexes, factors affecting the	Doubt solving sessions	
	crystal field parameters.	Discussion of Previous Years	
		Questions	
October,2022	Thermodynamics and Kinetic Aspects of	Assignment on M-LBonding in	
	metal complexes: A brief outline of	Transition Metal complexes	
	thermodynamic stability of metal complexes and	1 Discussion on Assignment	
	factors affecting the stability, Irving William	Doubt solving sessions	
	Series, substitution reactions of square planer	r Discussion of Previous Years	
	complexes of Pt [II], Trans effect.	Questions	
November,	Magnetic properties of Transition metal	Class Test of Magnetic properties of	
2022	complexes:Types of magnetic materials,	Transition metal complexes	
	magnetic susceptibility, method of determining		
	magnetic susceptibility, spin only formula, L-S	Discussion on Test	
	coupling, correlation of μ_s and μ_{eff} values, orbital		
	contribution to magnetic moments, application of	Presentation of Students	
	magnetic moment data for 3d metal complexes.		
	Electronic spectra of Transition metal	Doubt solving sessions	

	complexes:Selection rules for d-d transition,		
	spectroscopic ground states, spectrochemical	Discussion of Previous Years	
	series,	Questions	
December,	Electronic spectra of Transition metal	Doubt solving sessions	
2022	complexes: orgel energy level diagram for d ¹ and	Discussion of Previous Years	
	d ⁹ states, discussion of electronic spectrum of	f Questions	
	$[Ti(H_2O)_6]^{+3}$ complex ion.		
	Revision of syllabus		

Lesson Plan [Academic session 2022-2023]

Class: B. ScThird Year [Vsemester]

Subject: (CH-302) Physical Chemistry

Dr. Amit Kumar, Assistant Professor of Chemistry

Month	Торіс	Academic Activities
September,	Physical Properties and Molecular Structure:Optical	Introduction of
2022	activity, polarization-(Clausius-Mossotti equation derivation	Syllabus and Course
	excluded). Orientation of dipoles in an electric field, dipole	outcomes
	moment, induced dipole moment, measurement of dipole	
	moment-temperature method and refractivity method, dipole	Doubt solving sessions
	moment and structure of molecules, Magnetic permeability,	
	magnetic susceptibility and its determination. Application of	Discussion of Previous
	magnetic susceptibility, magnetic properties – paramagnetism,	Years Questions
	diamagnetism and ferromagnetism	
October,2022	Spectroscopy: Introduction: Electromagnetic radiation,	Sessional Test of
	regions of spectrum, basic features of spectroscopy, statement	Physical Properties and
	of Born-oppenheimer approximation, Degrees of freedom.	Molecular Structure
	Rotational Spectrum: Selection rules, Energy levels of	
	rigid rotator (semi-classical principles), rotational spectra of	Discussion on Test
	diatomic molecules, spectral intensity distribution using	
	population distribution (Maxwell-Boltzmann distribution),	Doubt solving sessions
	determination of bond length and isotopic effect.	
		Discussion of Previous
Norrowhan	Vibrational masterion Selection miles Energy levels of simple	Years Questions
November,	harmonia oscillator, nure uibrational spectrum of distornia	Doubt colving cossions
2022	malaculas determination of force constant and qualitative	Doubt solving sessions
	relation of force constant and hond energy idea of vibrational	Discussion of Providus
	frequencies of different functional groups	Vears Questions
	Raman Spectrum : Concept of polarizibility pure rotational	I cars Questions
	and pure vibrational Raman spectra of diatomic molecules	
	selection rules. Quantum theory of Raman spectra	
	Quantum Mechanics-I: Black-body radiation Plank's	
	radiation law, photoelectric effect, postulates of quantum	

	mechanics, quantum mechanical operators, commutation	
	relations, Hamiltonian operator,	
December,	Quantum Mechanics-I:Hermitian operator, average value of	Doubt solving sessions
2022	square of Hermitian as a positive quantity, Role of operators in	
	quantum mechanics, To show quantum mechanically that	Discussion of Previous
	position and momentum cannot be predicated simultaneously,	Years Questions
	Determination of wave function & energy of a particle in one	
	dimensional box. Revision of syllabus	